Lecture 16

Cor. Let X be a moneygty pertect Polish space, ecg. \mathbb{R}. There is no Base meas. (as a subset of X^{2}) well-arber < of X. (< is a subset of X^{2} ?)

Remark. For top. poses X, Y, there is a natural topology on $X_{X} Y$, called the product topology, there the open ats are genecctil b, set of the form $U \times V$ for $U \leq X$ al $V \leq Y$ open. In case X, Y are metric spaces with metrics $d_{x} a d y$, respectively, $X \times Y$ is a metric space with, for example, the d_{∞}-metric, ie.

$$
d_{X x Y}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{d_{x}\left(x, x^{\prime}\right), d_{Y}\left(y, y^{\prime}\right)\right\} .
$$

HW In this case, the sets $U_{x} V, U \leq X d V \leq Y$ open, form a basis for $X \times Y$. In particular, this holds for $X \times X=: X^{2}$.

Proof of Coollan, Suppox towards a contradiction the 子 well-ocles
\angle on X. Recall $\operatorname{Hat} I \leq X$ is called initial if it's closed downward under <, ie. if $a \in I$ then all $b<a$ are also in I (in other words, $<_{a} \leq I$). X itself is an initial set, $\xrightarrow[X]{\text { 位 }}$ and other initial sets I are of the form $<^{\circ}$ for some $u \in X$ (indeed, take e a to be the \angle-least dement of $X(I)$. Note Hot $\angle^{a}+<^{b} \Leftrightarrow a<b$, so the set of initial sets is also well-ordered uncles c.

Claim. If an initial set $I \subseteq X$ is nonmeagce, then its restcicion $<\left.\right|_{I}:=<\cap I^{2}$ is also wonmengere.
Pf. By Kuratowsthi-Ul|an, I^{2} is nonmeagre (each fiber of I^{2} is equal to I, which is woneeage $)$. But $I^{2}=\left(<\left.\right|_{I}\right)$
 $V\left(>\left.\right|_{I}\right) \cup\left(=\left.\right|_{I}\right)$, weer $\Delta_{I}:=\{(x, t): x \in I\}$. AW x is perfect $\Leftrightarrow \Delta_{X}$ is nowhere cense. The map $(x, y) \mapsto(y, x)$ is a homeororphin of from x^{2} to X^{2}, which wags <1 onto $>I_{I}$, so both are menyce/nomegge at the save tine, so the cst both bo nonmenge berse X is Bare.

X itself is an initial st ad is connengre (benne $X_{\text {is Bic) }}$) so we may take the least nonmeagre initial set I, using the $<$ is a well-order. Since each tiber I" of I is still an initial set which is strictly contained in I, it must be segre. By Kuectowsti-Ulam, $<I_{I}$ is meagre,
 coateaclicting the Uam.

Generic egodicity and Bone graphs.
Let X be a Polish spar. We consider equivalence relations on X. They arise uatucally from many sources, in partcalcar, frow graphs and from action of teansfenctions or groups of tecansfoructions.

Def. We say Ht a transformation $T: X \rightarrow X$ is Bone (resp. Baire meas.) if the T-peeinange of every open set j Bone (resp. Baize meas.). The graph of T is

$$
\operatorname{gcaph}(T):=\left\{\left(x, T_{x}\right): x \in x\right\} \subseteq x^{2} .
$$

We usually depict this as
 Modern combinatorial dynamics depicts graph (T) as:

We denote this graph ha G_{T} al we call the GT-conreacted components the orbits of T. The equivalence relation of being in the save connected component/ orbit is called the orbit equivalence relation of T and denoted by E_{T}.

Obs. $\forall x, y \in X, \quad x E_{T y} \Leftrightarrow \exists n, m \in \mathbb{N}$ sit. $T_{x}^{n}=T^{m}$.
Examples, (a) Let $X:=S^{\prime}:=$ unit circle in \mathbb{R}^{2}.
$S^{\prime} T_{\alpha \times}$ Fix an angle α al let $T_{\alpha}: X \rightarrow X$ be cotatia by α. This is a homeomorphism. We call T_{α} a rational rotation if $\alpha / 2 \pi$ is rational, otherwise
we call it a_{n} iecational rotation. For a cation cl rotation, orbits are finite and have the save size (maybe q, where $\alpha / 2 \pi=P / 4$ irceckrible), and each connected opponent is a cycle. For an irrational rotation, each orbit is infinite and, is fact, dense. HW Each roupected component is this case is a \mathbb{Z}-line

The rotation T_{0} is the same (is isomorphic tod the asp $x \mapsto x+\alpha / 2 \pi(\bmod 1)$, where "mod 1 " is clefined b, taking $(0,1) \rightarrow[0,1)$
the fractional part, ie.

$$
x+\alpha / 2 \pi(\bmod 1):=\text { The tractional }
$$

pact of $x+\alpha / 2 \pi$.
In other words, we identity $[0,1)$ wite S via the nap $x \leftrightarrow e^{2 \pi i x}$.
(b) The baker map $b_{k}:(0,1) \rightarrow[0,1)$

$$
k=2 \quad x \quad \mapsto k \cdot x \quad(\bmod 1)
$$

This is a Bored map benue the preinacges of open intervals are finite unions of (not necessarily open) isfervals.

Fach sonuected componect is a woplete bincry tree cooted at ∞ : $(k=2)$

(eft)
This transtomaction b_{k} is isocopplic to the shift transformation $\sigma_{k}: k^{\mathbb{N}} \rightarrow k^{\mathbb{N}}$. The isoworplisim $[0,1) \rightarrow k^{\mathbb{N}}$ $\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(x_{n+1}\right)_{n \in \mathbb{N}}$
is given by mapping $x \in[0,1)$ to its k-base cepresentation.
For an eq. sel. E on X, a set $Y \leq X$ is called E invoriant if it's a anion of E-classes, equiralantly, $x \in Y \Rightarrow[x]_{E} \leq Y$, shere $[x]_{E}$ clenotes the clasn at X.

Prop. Lt X, Y be metric (top.) sphes al suppose Y is $2^{\text {c. }}$ ctbl. The eveng Baire meas. Anction $t: X \rightarrow Y$ (e.g. Bone functions) conticnons when resticted to a coneagee set, i.e. I coneogre $X^{\prime} \leq X$ s.t. $\left.f\right|_{X^{\prime}}: X^{\prime} \rightarrow Y$ is continnous.

Proof. Fix a ctbl basis V for Y and wote that a fuccion to Y
is continnass if the preimages of basic open sets are open. for every $v \in \mathcal{D}$, we knur Hf $f^{-1}(V)$ is Bane meas. so 7 open it $U_{v}=^{*} f^{-1}(v)$. Letting $X^{\prime}:=X \backslash \bigcup_{v \in \mathcal{V}}(\underbrace{u_{v} \Delta f^{-1}(v)})$, we see ht X^{\prime} is comeagre and $\left.f\right|_{X^{\prime}} ^{-1}(V)=U_{V} \cap X^{\prime}$ for each $V \in V$, so $f X_{X^{\prime}}$ is sentimuons. $\left.\xrightarrow[Q^{u}]{V_{n}^{u}} \xrightarrow{f} 0^{v}\right)^{Y}$

Def. An equiv. eel. E on X is called generically ergodic if even E-irvariant Baire measurable set is meagre or comenge. We say a transformation $T: X \rightarrow X$ is generically ergodic if 10 is E_{T}.

